Automated trading powered by machine learning on the Sui blockchain
Transaction ID | Action | Amount | Status |
---|---|---|---|
0x4a2...c3e1 | AI Trade: Sell SUI | 150 SUI | Confirmed |
0x8b3...d5f7 | AI Trade: Buy SUI | 200 SUI | Confirmed |
0x1e9...7a2d | Funds Deposit | 1000 USDT | Pending |
0x6f2...9e10 | AI Trade: Buy BTC | 0.02 BTC | Confirmed |
module ai_trader::trading_contract {
use sui::tx_context::TxContext;
use sui::coin::{Coin, TreasuryCap};
use sui::balance::{Self, Balance};
use sui::transfer;
/// Global trading configuration shared by all users
struct GlobalConfig has key {
id: UID,
fee_percentage: u64,
treasury_cap: TreasuryCap<SUI>
}
/// User-specific trading account
struct TradingAccount has key {
id: UID,
owner: address,
balance: Balance<SUI>,
open_positions: vector<Position>,
trading_stats: TradingStats
}
/// Represents an open trading position
struct Position has store {
pair: String,
amount: u64,
entry_price: u64,
direction: bool, // true = long, false = short
timestamp: u64
}
/// Initialize the trading contract
public entry fun init(ctx: &mut TxContext) {
let treasury_cap = treasury_policy::create_supply_limited(
1000000000, // max supply
18, // decimals
ctx
);
let config = GlobalConfig {
id: object::new(ctx),
fee_percentage: 10, // 0.1%
treasury_cap
};
transfer::share_object(config);
}
/// Execute a trade through the AI agent
public entry fun execute_ai_trade(
config: &GlobalConfig,
account: &mut TradingAccount,
pair: String,
amount: u64,
is_buy: bool,
ctx: &mut TxContext
) {
// AI trading logic would be implemented here
// including price checking, risk management, etc.
// Charge trading fee
let fee = (amount * config.fee_percentage) / 10000;
let trade_amount = amount - fee;
// Update account balance
let coin = balance::withdraw(&mut account.balance, trade_amount);
// Execute trade (simplified for example)
if (is_buy) {
// Buy logic
} else {
// Sell logic
}
// Update trading stats
event::emit(AITradeEvent {
trader: tx_context::sender(ctx),
pair: pair,
amount: trade_amount,
is_buy: is_buy,
timestamp: tx_context::epoch(ctx)
});
}
}
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sui_sdk import SuiClient
class AITradingAgent:
def __init__(self, sui_client: SuiClient):
self.sui = sui_client
self.model = self._train_model()
def _train_model(self):
"""Train the AI model with historical data"""
# Load historical price data
data = pd.read_csv('historical_prices.csv')
data['returns'] = data['close'].pct_change()
# Create features
data['sma_50'] = data['close'].rolling(50).mean()
data['sma_200'] = data['close'].rolling(200).mean()
data['rsi'] = self._calculate_rsi(data['close'])
data = data.dropna()
# Create target (1 if next return is positive, 0 otherwise)
data['target'] = (data['returns'].shift(-1) > 0).astype(int)
# Train Random Forest classifier
features = ['sma_50', 'sma_200', 'rsi']
X = data[features]
y = data['target']
model = RandomForestClassifier(n_estimators=100)
model.fit(X, y)
return model
def analyze_market(self, pair: str):
"""Analyze market conditions and make a trading decision"""
# Fetch current market data
candles = self.sui.get_candles(pair, '1h', limit=300)
df = pd.DataFrame(candles)
# Calculate features for prediction
df['sma_50'] = df['close'].rolling(50).mean()
df['sma_200'] = df['close'].rolling(200).mean()
df['rsi'] = self._calculate_rsi(df['close'])
latest = df.iloc[-1]
# Make prediction
features = latest[['sma_50', 'sma_200', 'rsi']].values.reshape(1, -1)
proba = self.model.predict_proba(features)[0]
# Calculate confidence score
confidence = max(proba) * 100
signal = 'BUY' if np.argmax(proba) == 1 else 'SELL'
return {
'pair': pair,
'signal': signal,
'confidence': confidence,
'current_price': latest['close'],
'recommended_size': self._calculate_position_size(confidence)
}
def execute_trade(self, decision):
"""Execute trade through Sui blockchain"""
# Prepare transaction
tx = {
'function': 'ai_trader::trading_contract::execute_ai_trade',
'arguments': [
decision['pair'],
decision['recommended_size'],
decision['signal'] == 'BUY'
],
'gas_budget': 10000
}
# Sign and execute transaction
result = self.sui.execute_transaction(tx)
return result
def _calculate_rsi(self, prices, window=14):
deltas = np.diff(prices)
seed = deltas[:window+1]
up = seed[seed >= 0].sum()/window
down = -seed[seed < 0].sum()/window
rs = up/down
rsi = np.zeros_like(prices)
rsi[:window] = 100. - 100./(1.+rs)
for i in range(window, len(prices)):
delta = deltas[i-1]
if delta > 0:
upval = delta
downval = 0.
else:
upval = 0.
downval = -delta
up = (up*(window-1) + upval)/window
down = (down*(window-1) + downval)/window
rs = up/down
rsi[i] = 100. - 100./(1.+rs)
return rsi
def _calculate_position_size(self, confidence):
"""Calculate position size based on confidence and risk management"""
base_size = 100 # Base size in SUI
risk_multiplier = confidence / 50 # Scale with confidence
return int(base_size * risk_multiplier)